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BACKGROUND: Despite the potential of exhaled breath analysis of volatile organic compounds
to diagnose lung cancer, clinical implementation has not been realized, partly due to the lack
of validation studies.

RESEARCH QUESTION: This study addressed two questions. First, can we simultaneously train
and validate a prediction model to distinguish patients with non-small cell lung cancer from
non-lung cancer subjects based on exhaled breath patterns? Second, does addition of clinical
variables to exhaled breath data improve the diagnosis of lung cancer?

STUDY DESIGN AND METHODS: In this multicenter study, subjects with non-small cell lung
cancer and control subjects performed 5 min of tidal breathing through the aeoNose, a
handheld electronic nose device. A training cohort was used for developing a prediction model
based on breath data, and a blinded cohort was used for validation. Multivariable logistic
regression analysis was performed, including breath data and clinical variables, in which the
formula and cutoff value for the probability of lung cancer were applied to the validation data.

RESULTS: A total of 376 subjects formed the training set, and 199 subjects formed the validation
set. The full training model (including exhaled breath data and clinical parameters from the
training set) were combined in a multivariable logistic regression analysis, maintaining a cut off
of 16% probability of lung cancer, resulting in a sensitivity of 95%, a specificity of 51%, and a
negative predictive value of 94%; the area under the receiver-operating characteristic curve was
0.87. Performance of the prediction model on the validation cohort showed corresponding
results with a sensitivity of 95%, a specificity of 49%, a negative predictive value of 94%, and an
area under the receiver-operating characteristic curve of 0.86.

INTERPRETATION: Combining exhaled breath data and clinical variables in a multicenter,
multi-device validation study can adequately distinguish patients with lung cancer from
subjects without lung cancer in a noninvasive manner. This study paves the way to imple-
ment exhaled breath analysis in the daily practice of diagnosing lung cancer.
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Take-home Points

Study Question: Can exhaled breath patterns of
patients with NSCLC and without NSCLC
adequately be discriminated with an electronic nose
in a multicenter, multi-device validation study?
Results: Exhaled breath data can adequately distin-
guish patients with lung cancer from subjects without
lung cancer in a noninvasive manner in this multi-
center, multi-device study that included 575 subjects.
Adding clinical variables relevantly improved the
diagnostic performance to diagnose lung cancer.
Interpretation: Validation of a prediction model, as
performed in this study, is a pivotal step for clinical
integration of exhaled breath analysis in the diag-
nostic path of lung cancer.
Lung cancer is the leading cause of cancer mortality
worldwide.1,2 Its high mortality rate is generally a
consequence of advanced-stage disease at the time of
initial diagnosis. Despite striking progress in treatment
options in advanced-stage lung cancer, such as
molecular-targeted therapies and immunotherapy, an
essential step to reducing lung cancer mortality is early
detection through noninvasive, point-of-care
strategies.3-6

Exhaled breath contains a gas mixture of thousands
of volatile organic compounds (VOCs) in low
concentrations that reflect metabolic processes at the
tissue level.7,8 Exhaled breath analysis is based on shifts
of this VOC composition due to biochemical changes in
different (patho) physiological processes. This method
has been investigated extensively in clinical research as a
noninvasive tool to diagnose a variety of conditions.9-11

Studies on pattern recognition for classification of VOC
mixtures through nonspecific cross-reactive sensors
mimicking human and animal olfaction (eg, electronic
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noses) as well as identifying individual VOCs by using
separation methods (eg, gas chromatography mass
spectrometry) have shown promising results in pilot
studies for the diagnosis of lung cancer.12-18

In addition, studies based on imaging techniques have
been shown to be effective for screening purposes in the
diagnosis of lung cancer in high-risk asymptomatic
subjects. Significant mortality reduction in high-risk
subjects was observed in the National Lung Screening
Trial (NLST) and the Dutch-Belgian Lung Cancer
Screening Trial (NELSON).19,20 However screening of
high-risk subjects has not yet been implemented in
Europe. Furthermore, determination of accurate
screening criteria remains debatable because only
subjects at the highest risk for lung cancer are targeted in
current screening programs.

The aeoNose (the eNose Company) is a handheld
electronic nose device featuring an array of three metal-
oxide sensors that enables real-time breath analysis. The
technology and breath sampling method have been
described previously in detail.21,22 Following exposure to
VOCs, consecutive conductivity changes at the sensors
are recorded, resulting in a digital exhaled breath profile
consisting of conductivity values. Exhaled breath profiles
of patients with lung cancer can then be distinguished
from profiles of non-lung cancer subjects by using
artificial intelligence techniques. Once a model has been
developed for separating the groups, a new breath profile
can be classified using this model. In previous studies,
several malignant and nonmalignant conditions have
been investigated using the aeoNose.13,23-25

We have previously reported the results of a proof-of-
concept multicenter study performed with the aeoNose
in which a prediction model, based on exhaled breath
profiles, was developed using supervised machine
learning techniques to discriminate subjects with and
without non-small cell lung cancer (NSCLC) in a
hospital setting.13 An artificial neural network (ANN)
trained with 290 subjects was able to classify breath
samples with a sensitivity of 94%, a specificity of 33%,
and an area under the receiver-operating characteristic
curve (AUC-ROC) of 0.76. Resampling techniques,
including leave-10%-out cross-validation and
bootstrapping, were incorporated to reduce the risk of
overfitting of the diagnostic model. Adding readily
available clinical information (ie, sex, age, number of
pack-years, smoking status, COPD status) to the exhaled
breath data resulted in a relevant improvement in
diagnosing patients with lung cancer.26
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To date, no single breath test has yet been approved for
clinical practice to diagnose lung cancer. For this,
validation studies are required, preferably involving
multiple devices in multiple centers, where part of the
data are used for developing a diagnostic model, and the
remainder remain blinded to validate the model. Several
studies on external validation of breath biomarkers in
lung cancer have been performed; however, these studies
were aimed at identification of specific VOCs rather
than exhaled breath patterns.14,27,28 Regarding pattern
recognition techniques, Fens et al29 and Bos et al30
chestjournal.org
assessed validation of exhaled breath molecular patterns
in pulmonary diseases other than lung cancer, based on
previous created training sets, showing moderate to high
accuracy.

The objective of this prospective multicenter study using
multiple devices was to train and subsequently validate a
prediction model to distinguish NSCLC patients from
subjects initially suspected of lung cancer but considered
negative and healthy control subjects, based on their
exhaled breath patterns.
Study Design and Methods
Study Design and Participants

Participants suspected of having lung cancer were recruited from seven
outpatient pulmonary departments between May 2018 and April 2020.
The participating hospitals comprised Medisch Spectrum Twente
Enschede, Radboud UMC Nijmegen, Medisch Centrum Leeuwarden,
Martini Ziekenhuis Groningen, Catharina Ziekenhuis Eindhoven,
Sint Antonius Ziekenhuis Utrecht (all in The Netherlands), and
Universitätsspital Basel (Switzerland). Each center used one aeoNose
device, except for the Basel site, which used two devices. A single
aeoNose device needs, as a rule of thumb, a minimum number of 30
observations in the smallest group (in this case, positive
measurements) to calibrate the device and hence form reliable
conclusions considering the training data; thus, data from devices
with an insufficient number of measurements were not used for
further analyses.

Subjects suspected of having lung cancer, based on symptom reports or
abnormal imaging, were divided into a group with confirmed NSCLC
based on pathology and a group with a rejected diagnosis of lung
cancer (control subjects) based on imaging and/or pathology. Types
of lung cancer other than NSCLC were excluded. Additional healthy
control subjects with a minimum age of 55 years were recruited
through an alert at the hospitals’ websites. In case of pathologically
confirmed lung cancer, staging was established according to the
eighth edition of the American Joint Committee on Cancer TNM
staging system.31 Patients suspected of lung cancer in whom
pathology (ie, the gold standard) was not performed due to
insufficient clinical performance were excluded from the analyses.
Demographic data and data on some highly prevalent comorbidities
(ie, COPD, diabetes mellitus, hypertension) were collected for all
subjects. All participants were asked to complete a short
questionnaire on recent smoking, eating, and alcohol intake, and
were instructed to perform tidal breathing through the non-
rebreathing aeoNose device for 5 min with their nose clipped.

The study protocol was approved by the institutional review board of
Medisch Spectrum Twente and the board of directors of all
participating institutions (e-Appendix 1). All eligible patients
provided written informed consent.

The second-generation, CE-certified aeoNose device was used in this
study. Because the training study was performed with the first-
generation, CE-uncertified device, these previously collected data
were deemed not compatible and therefore not used.13 Instead, we
decided to create a split-sample study design in which we enabled
development and subsequent validation of new prediction models,
which conform to the European Respiratory Society criteria for
exhaled biomarkers.32 Collected breath data were split into a training
cohort for supervised learning and internal cross-validation, and a
validation cohort, which was kept blinded, for model validation. A
random subset of subjects was assigned to the validation cohort,
based on the sample size calculation of this validation cohort. Also,
an equal prevalence of patients with lung cancer in both sets was
taken into consideration.

Statistical Analysis

Clinical characteristics are reported as means with SDs in case of a
normal distribution, or as medians with interquartile ranges.
Nominal variables are reported as numbers with corresponding
percentages. To assess differences between the groups, t tests, U tests,
or c2 tests were applied, as appropriate.

Analysis of exhaled breath data was executed by Aethena, a proprietary
software package, incorporating data pre-processing, data
compression, machine learning algorithms for classification (eg,
ANN, Support Vector Machine, Random Forest [RF], XGBoost,
logistic regression), internal validation techniques (leave-10%-out
cross-validation and bootstrapping), and model selection. Analyses
yielded values between –1 and 1 per subject, indicating the degree to
which the subject was classified as having lung cancer (maximum
value, 1) or not having lung cancer (minimum value, –1). Details on
the software package Aethena have been published previously.22

We selected and trained five different models (each using a different
classifier: ANN, Logistic Regression, RF, RF Extreme, and XGBoost),
with each showing proper discriminative performance. Because the
various classifying techniques could interpret the data differently, we
envisioned that averaging results over these five models would
increase classification robustness. A cutoff value for the probability
of lung cancer was determined for the training set to obtain a high
sensitivity and negative predictive value (NPV), together with an
acceptable number of false-positive cases, as deemed relevant for
clinical practice. ROC curves were composed and AUCs were
calculated with 95% CIs.

Subsequently, clinical variables (ie, sex, age, number of pack-years,
COPD, diabetes, hypertension, BMI, the absolute value obtained
from the aeoNose [between –1 and 1]) were entered in a
multivariable logistic regression analysis. Nonsignificant variables
were eliminated according to the backward method until the fit of
the model decreased significantly, based on the –2 log likelihood.
Age and sex were included regardless of their significance. A cutoff
value for the probability of lung cancer based on this multivariable
model was again chosen to obtain a high sensitivity and NPV
together with an acceptable number of false-positive cases.

The diagnostic performance of this final logistic regression model,
based on the training data, was validated on the blinded data set,
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where the b-coefficients were fixed. The same cutoff value, chosen for
the training data to determine the presence of lung cancer, was applied
to the logistic regression analysis in the validation set. Results are
expressed as sensitivity, specificity, predictive values, and AUC-ROC.

A calibration plot was constructed to show how well the predicted
probability of lung cancer matches the observed probability of lung
cancer.

Stratification for variables to evaluate possible influences on exhaled
breath outcomes was performed in explorative analyses for sex, age,
presence of COPD, lung cancer stage, and type of histology. Early
stage lung cancer was classified as either stage I or II, and late-stage
lung cancer was classified as stage III or IV. To compare the final
prediction model including breath data and clinical variables vs a
Figure 1 – Flowchart study cohort. NSCLC ¼
non-small cell lung cancer; SCLC ¼ small cell
lung cancer.

903 Subjects perform
single aeoNose
measurement

575 Subjects were inc
in the final analyse
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nodule calculator, we calculated Spearman rho and the diagnostic
performance of both models expressed in terms of sensitivity,
specificity, and predictive values.

Sample Size

Taking into consideration a sensitivity of 95%, as acceptable in clinical
practice, estimated with a precision of 5%, with a prevalence of lung
cancer in our population of 40%, and an expected specificity of 50%,
we would need 183 subjects in our validation cohort. This would
lead to a negative predictive value of 93% (95% CI, 0.85-0.98).

SPSS version 24.0 (IBM SPSS Statistics, IBM Corporation) was used
for analysis. All statistical tests were two-sided with a significance
level at .05.
Results
A total of 575 subjects were enrolled in the analyses
(Fig 1). Approximately two-thirds formed the training
set (376 subjects [160 patients with lung cancer, 51
suspected but negative, and 165 healthy control
subjects]), and the remaining one-third comprised the
validation set (199 subjects [79 patients with lung
cancer, 32 suspected but negative, and 88 healthy control
subjects]). Subject characteristics are described in
Table 1. Data were obtained using five aeoNose devices.

The training model, exclusively based on breath data
from the aeoNose, showed, at a cutoff value of –0.36, an
AUC-ROC of 0.83 (95% CI, 0.79-0.87), a sensitivity of
91%, a specificity of 54%, and an NPV of 89%. The
diagnostic performance of the aeoNose, maintaining the
same cutoff value in the validation set, reached an AUC-
ROC of 0.79 (95% CI, 0.72-0.85), with a sensitivity of
88%, a specificity of 52%, and an NPV of 87%, which
conforms to the training model.
Due to the multicollinearity of smoking status and
number of pack-years, we chose to include number of
pack-years in these analyses because this parameter
contained the most detailed information. The
multivariable analysis based on solely clinical data
from the training set, including sex, age, and number
of pack-years, yielded an AUC-ROC of 0.67 (95% CI,
0.61-0.72); the validation set yielded an AUC-ROC of
0.75 (95% CI, 0.68-0.82).

Exhaled breath data and clinical parameters from
the training set were combined in a multivariable
logistic regression analysis, maintaining a cutoff of
16% probability of lung cancer, resulting in a sensitivity
of 95%, a specificity of 51%, and an NPV of 94%, which
was based on clinical relevance (Tables 2-3). This
corresponded to an AUC-ROC of 0.87 (95% CI, 0.83-
0.90). When applying the identical multivariable logistic
regression model on the validation set, maintaining the
selected cutoff probability of 16%, we observed a
ed a

328 Subjects were excluded:
160 Due to insufficient measurements per device
36 Failed measurement
62 No primary NSCLC:
         29 SCLC
         2 Mesothelioma
         31 Metastasis to other organ
18 Missing essential data
52 Exclusion criteria:
         33 No pathologic diagnosis
         19 Other

luded
s
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TABLE 1 ] Clinical Characteristics of All Enrolled Subjects

Characteristic

Training Set (n ¼ 376) Validation Set (n ¼ 199)

Lung Cancer
(n ¼ 160)

Control Subjects
(n ¼ 216) P Value

Lung Cancer
(n ¼ 79)

Control Subjects
(n ¼ 120) P Value

Age, mean � SD, y 68.4 � 8.6 64.6 � 8.2 < .001 69.0 � 7.9 63.4 � 9.4 < .001

Male 97 (60.6) 131 (60.6) .996 49 (62.0) 59 (49.2) .075

Smoking status < .001 .001

Current smoker 48 (30.0) 41 (19.0) 30 (38.0) 27 (22.5)

Ex-smoker 103 (64.4) 130 (60.2) 45 (57.0) 65 (54.2)

Never smoker 9 (5.6) 45 (20.8) 4 (5.1) 28 (23.3)

Pack-yearsa < .001 < .001

0 8 (5.1) 45 (20.8) 2 (2.6) 28 (23.3)

1-20 37 (23.4) 56 (25.9) 14 (18.4) 38 (31.7)

21-40 52 (32.9) 55 (25.5) 28 (36.8) 19 (15.8)

> 40 61 (38.6) 60 (27.8) 32 (42.1) 35 (29.2)

COPD 71 (44.4) 94 (43.5) .869 37 (46.8) 52 (43.3) .627

Hypertensionb 66 (41.3) 74 (34.3) .166 27 (34.6) 38 (31.9) .695

Diabetesb 15 (9.4) 22 (10.2) .794 11 (13.9) 10 (8.4) .217

BMI, mean � SD, kg/m2 26.4 � 4.4 25.8 � 4.7 .210 26.2 � 5.0 25.7 � 4.4 .402

Type of NSCLC

Adenocarcinoma 101 (63.1) 39 (50.0) . .

Squamous cell carcinoma 43 (26.9) 32 (41.0) . .

Large cell carcinoma 6 (3.8) 4 (5.1) . .

NOS 10 (6.3) 3 (3.8) . .

Stagec

I 54 (33.8) 21 (26.6) . .

II 23 (14.4) 15 (19.0) . .

III 38 (23.8) 19 (24.1) . .

IV 45 (28.2) 24 (30.4) . .

Hospital

MST 66 (41.3) 69 (31.9) 30 (38.0) 30 (25.0) .

Radboud UMC 31 (19.4) 29 (13.4) 20 (25.3) 12 (10.0) .

MCL Leeuwarden 29 (18.1) 34 (15.7) 17 (21.5) 33 (27.5) .

US Basel 34 (21.3) 84 (38.9) 12 (15.2) 45 (37.5) .

Data are presented as No. (%) unless otherwise indicated. MCL ¼ Medisch Centrum Leeuwarden; MST ¼ Medisch Spectrum Twente; NOS ¼ not otherwise
specified; NSCLC ¼ non-small cell lung cancer.
aFive missing subjects.
bOne missing subject.
cAccording to the eighth edition of the American Joint Committee on Cancer TNM staging system.
sensitivity of 95%, a specificity of 49%, a positive
predictive value of 54%, and an NPV of 94%, with a
corresponding AUC-ROC of 0.86 (95% CI, 0.81-0.91)
(Fig 2, Table 3). In case of this cutoff probability of 16%,
63 of the 196 subjects (32%) were classified as “no lung
cancer” (Table 4). Corresponding performance of breath
data only, with an equal cutoff probability of lung cancer
in the training and validation set, is also displayed in
Table 3.
chestjournal.org
A calibration plot with the predicted probability of
lung cancer in deciles of the validation cohort is shown
in e-Figure 1. The figure shows good concordance
between the predicted probability of lung cancer in
each decile, and the observed prevalence of lung
cancer in the same decile.

Explorative subgroup analyses show equal performance
of the aeoNose in early- and late-stage lung cancer, in
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TABLE 2 ] Results of the Multivariable Logistic Regression Analysis for Diagnosing Lung Cancer

Variable Multivariable Analysis: OR (95% CI) Regression Coefficient (b)

–4.949 (intercept)

Sex (ref female) 0.68 (0.38-1.19) –0.393

Age 1.05 (1.02-1.09) 0.049

Pack-years

0 Ref

1-20 5.19 (1.91-14.1) 1.647

21-40 8.11 (3.02-21.76) 2.092

> 40 8.69 (3.22-23.50) 2.162

Classification value aeoNose 27.9 (14.0-55.5) 3.328

Ref ¼ reference.
both sexes, different age groups, and different types of
histology (e-Tables 1-12). In stage I and II lung cancer,
sensitivity and NPV were 94% and 97%, respectively; in
stage III and IV lung cancer, sensitivity and NPV were
84% and 90%. Furthermore, we compared our full
model with the Mayo Clinic nodule calculator that
included the following clinical variables: age, smoking
history, previous malignancy, nodule size, upper lobe,
spiculation, and PET scan result (e-Tables 13-14).33,34

This analysis included 55 patients who met the inclusion
criteria for this nodule calculator. A fair correlation was
observed between the predicted value of lung cancer
being present with a Spearman rho of 0.31 (P ¼ .021).
When using our predefined cutoff probability of lung
cancer of 16% for both the full model, including breath
data and clinical variables, and for the Mayo Clinic
nodule calculator, the sensitivity was 94.6% and
83.8% for the study model and the Mayo Clinic model.
Similarly, specificity was 22.2%, and 61.1%, NPV was
66.7% and 64.7%, and positive predictive value was
71.4% and 81.6%.
Discussion
In the current study, we trained and subsequently
validated exhaled breath data to distinguish between
patients with NSCLC and clinically relevant control
subjects in a multicenter setting using multiple devices.
The findings show that patients with NSCLC can
successfully be discriminated from subjects without
NSCLC by using exhaled breath patterns based on a
training set concentrating on a high NPV to exclude the
diagnosis of lung cancer in a noninvasive manner.
Discrimination between both groups improves
significantly when readily available clinical variables (ie,
age, sex, number of pack-years) are added to the
702 Original Research
prediction model. Classifying new subjects, not used for
training of the aeoNose, exhibited excellent
performance. The multivariable analysis based on solely
clinical data showed worse discrimination compared
with the full model, underlining the important
additional value of exhaled breath data.

Our previously performed training study indicated that
exhaled breath patterns differ between patients with lung
cancer and subjects without lung cancer.13 The current
study provided the necessary essential step in which a
prediction model based on a training set was validated
on “blind” subjects in a multicenter and multinational
setting, using multiple devices.

To our knowledge, this is the first NSCLC study to
validate blinded exhaled breath profiles based on pattern
recognition techniques in a multicenter split-sample
design, including readily available clinical variables,
while using multiple electronic nose devices. Previously,
Machado et al35 performed a similar study in which they
used a split-sample design to validate a prediction model
to distinguish patients with lung cancer from control
subjects. However, although they reported promising
results, the study was performed in a single-center
setting and had a very small study population (14
individuals with bronchogenic carcinoma in both the
training phase and validation phase, respectively). In
addition, Mazzone et al16 performed a split-sample
study design using pattern recognition techniques based
on exhaled breath to distinguish patients with lung
cancer from control subjects. This concerned a two-
center study with the application of only one electronic
nose device, and diagnostic performance in the
validation set could be considered moderate. A recent
study of Long et al27 showed interesting results in an
external validation study of exhaled breath biomarkers
[ 1 6 3 # 3 CHES T MA R C H 2 0 2 3 ]



TABLE 3 ] Diagnostic Accuracy of Exhaled Breath Analysis in the Training and Validation Set

Prediction Model
Cutoff

Probabilitya Sensitivity Specificity PPV NPV AUC-ROC (95% CI)

Training clinical data onlyb 20% 47.5 76.4 59.5 66.5 0.67 (0.61-0.72)

Validation clinical data onlya,b 20% 53.9 77.5 60.3 72.7 0.75 (0.68-0.82)

Training breath data onlyb 20% 93.0 54.2 59.8 91.4 0.83 (0.79-0.87)

Validation breath data onlya,b 20% 88.2 48.3 51.9 86.6 0.79 (0.72-0.85)

Training clinical parameters þ breath datab 16% 94.9 50.5 58.4 93.2 0.87 (0.83-0.90)

Validation clinical parameters þ breath
dataa,b

16% 94.7 49.2 54.1 93.7 0.86 (0.81-0.91)

AUC-ROC ¼ area under the receiver-operating characteristic curve; NPV ¼ negative predictive value; PPV ¼ positive predictive value.
aCorresponding cutoff values and fixed b-coefficients based on logistic regression analyses in the training set.
bAll analyses are performed in subjects without missing data (training data, n ¼ 374; validation data, n ¼ 196).
to diagnose lung cancer. Although the investigators used
the gas chromatography mass spectrometry technique,
with several Tedlar bags and one gas chromatography
mass spectrometry station, to identify molecules in
exhaled breath, they also focused on the possible origin
of breath biomarkers by explaining specific metabolic
processes in lung cancer pathogenesis. However, this
strict study protocol cannot easily be implemented in
daily clinical practice and, contrary to the aeoNose, it
does not offer a point-of-care solution.
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Figure 2 – Combined ROC curve of the validation models based on either e
rameters. ROC ¼ receiver-operating characteristic.
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The reported AUC-ROC of 0.86 in the current study as
obtained by the multivariable validation model provides
very good accuracy but is lower than some of the
reported accuracies by other studies using pattern
recognition techniques in exhaled breath analysis to
diagnose lung cancer.12,18,36-38 Possible explanations for
these discrepancies are incomparable study designs and
control groups, a single-center vs multicenter setting,
small data sets with the inherent risk of overfitting of
models, the use of different sensor technologies, use of a
1.00.6 0.8
ecificity

 Curve

arameters + breath data
ata only

xhaled breath data only and a prediction model including clinical pa-
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TABLE 4 ] Final Multivariable Prediction Model (2 � 2) Including Clinical Parameters þ Breath Data, and a Cutoff
Probability of 16%

Outcome Prediction Model Lung Cancer (Gold Standard) No Lung Cancer (Gold Standard) Total

Lung cancer (final model) 72 61 133

No lung cancer (final model) 4 59 63

Total 76 120 196
single device, and reporting results based on training
data that are not validated.

Validation of a prediction model, as performed in this
study, is a pivotal step for clinical integration of exhaled
breath analysis in the diagnostic path of lung cancer. To
assess the feasibility and acceptability of the electronic
nose in clinical practice, we envision using the aeoNose
in parallel with current practice in a hospital setting.
Although based on an exploratory analysis, the validated
model seems to be able to distinguish early-stage lung
cancer from non-lung cancer with relatively high
accuracy. This finding supports the potential of the
model to have a possible role in screening purposes. This
would have to be investigated in the target population,
and, in all likelihood, a different cutoff value needs to be
chosen. In case of doubt (eg, based on CT scans), and a
low probability of lung cancer, based on the validated
model, a wait and see strategy could be used.

In addition, when comparing our full model vs a
frequently used nodule calculator (ie, the Mayo Clinic
nodule calculator), we found a higher sensitivity at the
cost of lower specificity, and comparable NPV. However,
it must be noted that this subanalysis was performed
with relatively few subjects suspected of having lung
cancer. Furthermore, the adjusted Mayo Clinic nodule
calculator incorporates the PET result, which logically
improves the diagnostic accuracy.

Exhaled breath analysis could have promise as an
element in an integral lung cancer screening program,
most likely combined with other noninvasive tests such
as low-dose CT (LDCT) scan screening. However, the
aeoNose should then be trained on a sample of subjects
with an increased probability of lung cancer such as
individuals who smoke heavily. Despite the fair number
of early-stage lung cancer cases in the current cohort, we
did not specifically analyze pulmonary nodules, which
have inherently been the focus of LDCT scan screening.
Future studies should focus on solitary pulmonary
nodules and assess whether exhaled breath analysis can
fulfill a substantial role in lung cancer screening,
possibly serving a synergistic role combined with LDCT
704 Original Research
scan, and can guide risk assessment prior to LDCT scan
screening as a preselection tool or following LDCT scan
screening to determine surveillance intervals.6 However,
in such a setting, new prediction models must be built
with data based on current screening criteria. In addition
to assessment of lung cancer risk, exhaled breath
analysis could serve as a prognostic biomarker to predict
response on therapies and possible recurrence risk.39,40

A notable strength of the current study is the addition of
clinical variables to the prediction model. This easily
available information has previously been shown to be
informative, including development of clinical
prediction scores in lung cancer screening based on
imaging.33,41 Our results show significant improvement
of the prediction model with the addition of clinical
variables, which was confirmed in the validation cohort.
Another strength is the excellent match between training
and validation results. This is not straightforward, as
artificial intelligence techniques are usually applied with
far larger data sets.

The aeoNose device features the possibility of
performing real-time analysis of breath data without the
necessity of breath sample storage; in addition, it
incorporates a washout period of 2 min in which the
lungs are fully cleared of dead space ventilation, and
analysis is solely performed on VOCs originating from
metabolic processes in peripheral tissues. Other strong
points worth mentioning are the multicenter and
multinational design. Multiple devices were used for
gathering training data, leading to a prediction model
capable of classifying blinded samples, also collected
with multiple devices.

The study follows the recommendations of the
TRIPOD statement (Transparent Reporting of a
multivariable prediction model for Individual
Prognosis Or Diagnosis).42 Unfortunately in the
current case, due to the use of the second-generation,
CE-certified aeoNose device, we could not use
previously collected data. Given the long time frame of
collecting the necessary data, we decided to use a split-
sample study design in which we simultaneously
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trained and validated a prediction model. We intended
to use breath data from all eight aeoNoses (seven
hospitals) to create a training cohort for supervised
learning and cross-validation, and a validation cohort,
which was kept blinded, for validation. However, it
turned out that in some of the participating hospitals,
the amount of breath data, due to limited positive and
negative lung cancer diagnoses, was not sufficient for
adequate data analysis and could therefore result in a
somewhat diminished accuracy.

Interpretation
Combining exhaled breath data and clinical parameters
in a multicenter, multi-device validation study can
adequately distinguish patients with lung cancer from
chestjournal.org
subjects without lung cancer in a noninvasive manner.
This study paves the way to implement exhaled breath
analysis in the daily practice of diagnosing lung cancer.
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